研究背景

我々の研究のキーワード \Rightarrow Panoscopic Assembling

原子・ナノレベルで構造制御した材料創製

母材 ⇒ 処理 ⇒ 高次機能の発現

理論と実験値の一致

磁気損失の周波数特性

磁気特性の劣化が起こるコア径(限界コア径)

限界コア径の温度による変化と磁気特性の関係

研究対象 → 電源回路で用いられるチョークコイル (小電力用透磁率制御軟磁性材料)

研究背景

*J. K. Watson, Applications of Magnetism, New York: John Wiley & Sons, (1980) 241. 3

- 1. 高 B_s (小型化)
- 2. 高キュリー温度 T_c (広い動作温度帯域)
- 3. 高電気抵抗率 (うず電流の抑制)
- 4. 低磁気損失 (効率改善)
- 5. 良好な透磁率の制御性
- 6. 簡素な作製過程
- 7. 良好なループの線形性(回路設計に有利)

試料

*G. Herzer, IEEE Trans. Magn., 30 (1994) 4800.

理論と実験値の一致

磁気損失の周波数特性

磁気特性の劣化が起こるコア径

そのコア径の温度による変化と磁気特性の関係

実験結果(トロイダルコアの作製と限界コア径 D_c)

トロイダルコアの作製と限界コア径D_c

曲げ応力が磁気ひずみを介して新たな異方性を誘起

 K_{μ} :異方性エネルギー、 λ_{s} 磁気ひずみ、Y:ヤング率、D:コア径、d:試料の厚さ 12

理論と実験値の一致

磁気損失の周波数特性

磁気特性の劣化が起こるコア径

そのコア径の温度による変化と磁気特性の関係

 $D/D_{C/RT} > 1$ のコアの高温特性

 $D/D_{C/RT} < 1$ のコアの高温特性

15

考察(透磁率に関して)

<u> 透磁率:温度の影響をほぼ受けない</u>

一軸異方性を有する磁性体の困難軸方向の透磁率

高温下で $K_u \propto I_s^2$ が成立(Fig.6, 7) ⇒ μ_r は温度に依らず一定

D/*D_{c|RT}* = 0.32のコア

D>D_{c|RT}のコアの 損失値に近づく傾向

[1] 日本機械学会, 金属材料の弾性係数, 明善印刷, (1980) 19. [2] K. Twarowski *et al.*, *J. Magn. Magn. Mater.*, **150** (1995) 85. D_cの変化と磁気損失の関係(理論と実験値の一致 3)

 $D \ge D_c$ の大小関係が反転 \Rightarrow 損失の減少が飽和 温度増加により D/D_c が増加(D_c が減少) \Rightarrow 損失減少

理論と実験値の一致に関して

磁気損失の周波数特性

磁気特性の劣化が起こるコア径(限界コア径)

限界コア径の温度による変化と磁気特性の関係

 $D > D_{c|RT}, D < D_{c|RT}$ のコア共に

→ 250 °Cまで磁気特性の劣化なし

温度増加により限界コア径が減少することを確認

各物理定数の温度依存性から,その温度依存性を 予測したところ,実験結果とよく一致